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The lift on a small sphere in wall-bounded linear 
shear flows 
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(Received 19 February 1992 and in revised form 26 June 1992) 

This paper presents a closed-form solution for the inertial lift force acting on a small 
rigid sphere that translates parallel to a flat wall in a linear shear flow. The results 
provide connections between results derived by other workers for various limiting 
cases. An analytical form for the lift force is derived in the limit of large separations. 
Some new results are presented for the disturbance flow created by a small rigid 
sphere translating through an unbounded linear shear flow. 

1. Introduction 
This paper presents results for the lift force acting on a small rigid sphere in wall- 

bounded linear shear flows. It will be assumed that the sphere translates parallel t o  
the wall. Such a situation might arise in the sedimentation of a particle through a 
vertical flow. It will also be assumed that the relevant flow Reynolds numbers are 
small compared to unity so that asymptotic methods may be used to  derive an 
expression for the lift force. The results fill in gaps between the results previously 
published. Specifically, Saffman (1965) and McLaughlin (1991) considered the lift 
force acting on a small sphere in an unbounded linear shear flow. Cox & Hsu (1977) 
used the theory developed by Cox & Brenner (1968) to obtain analytical expressions 
for the migration velocity of a particle sedimenting parallel to a vertical wall. Their 
results are valid provided that the Reynolds number based on the distance of the 
particle from the wall and a characteristic flow velocity is small compared t o  unity. 
This assumption implies that the wall lies within the ‘inner’ region of the particle 
disturbance flow. Vasseur & Cox (1976) used the Cox-Brenner theory to obtain 
numerical results for the inertial migration velocity of a sphere sedimenting between 
two vertical walls. 

Relatively little information is available about the situation in which the wall lies 
in the outer region of the disturbance flow. Vasseur & Cox (1977) removed the 
restriction Rel < 1 for the case of a particle translating through a stagnant fluid next 
to a single planar wall or between two parallel walls. The only restriction on their 
analysis is that the Reynolds number based on the sphere diameter and the 
sedimentation velocity of the sphere should be small compared to unity. 

Drew (1988) extended Saffman’s analysis by including the effects of a distant wall. 
Drew assumed that, to  zeroth order in inertial effects, the sphere moves parallel to 
a rigid flat wall. He further assumed that a Q I, where a is the sphere radius and 1 is 
the distance between the centre of the sphere and the wall, so that the sphere may 
be treated as a point force acting on the fluid. Finally, he assumed that the sphere 
was sufficiently far from the wall that inertial effects were of the same order as 
viscous effects when the distance from the sphere was of order 1. With these 
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assumptions, he argued that the wall effects could be obtained by solving a fourth- 
order ordinary differential equation for the Fourier transform of the disturbance to 
the normal component of velocity due to the presence of the wall. Drew solved the 
ordinary differential equation by numerical means. 

The work to be presented in this paper differs from that of Drew in two important 
respects. The first difference is that Drew, like Saffman, copsidered only the strong 
shear limit in which the two Reynolds numbers satisfy Re; % Re,, where 

Re, = G d 2 / v ,  (1 .1)  

Re, = v ,d /v .  (1.2) 

In ( 1 . 1 )  and (1.2), d is the sphere diameter, G is the shear rate of the undisturbed flow, 
v is the kinematic viscosity, and v, is the velocity of the sphere relativp to the 
undisturbed fluid. In this paper, no restriction is placed on the ratio E = Re%/Re,. It 
will only be assumed that Re, and Re, are small compared to unity. 

The second difference between Drew’s work and the present paper is that Drew 
solved an ordinary differential equation by numerical means to obtain the Fourier 
transform of the migration velocity. It will be shown that an analytical solution may 
be obtained in terms of one of the Airy functions. Although one must, in general, 
compute the Fourier integrals numerically, it will be shown that, in the limit of large 
distances, an analytical solution may be obtained. For small distances, the results 
reduce to those derived by Cox & Hsu (1977) and Vasseur & Cox (1977). 

Two recent papers have discussed the effect of a distant wall on the lift force that 
acts on a neutrally buoyant sphere in channel flows. Schonberg & Hinch (1989) 
considered the lift force on a small, neutrally buoyant sphere in a plane Poiseuille 
flow. Drew, Schonberg & Belfort (1991) considered the lift force on a small, neutrally 
buoyant sphere in a laminar flow through a membrane duct. In both cases, the 
physics of the problem is different from the physics of the problem to be considered 
in this paper. A neutrally buoyant sphere produces a disturbance flow that, at  large 
distances from the sphere, is equivalent to the disturbance created by a force dipole. 

A thorough review of the literature dealing with inertial lift forces on small 
particles will not be attempted in this paper. Leal (1980) has reviewed the literature 
on inertial migration of particles at  low Reynolds numbers up to 1979. There are 
earlier reviews by Brenner (1966), Goldsmith & Mason (1967), and Cox & Mason 
(1971). More recent work has been reviewed by McLaughlin (1991). 

In $2, the boundary value problem to be solved will be posed and background will 
be provided. In  $3, the asymptotic form of the disturbance flow a t  large distances 
from the sphere will be derived from the solution for the Fourier transform of the flow 
presented by McLaughlin (1991). It will be shown that it is possible to obtain an 
analytical expression for the disturbance flow in this asymptotic limit. In  addition, 
a solution for the partial Fourier transform of the disturbance flow will be derived. 
The latter result will then be used in $4 to obtain results for the influence of the wall 
on the inertial migration velocity of (or lift force on) the sphere. Finally, the results 
are summarized in $5.  

2. Governing equations and background 
It will be assumed that a rigid sphere is located at  the origin of a Cartesian 

coordinate system and that, in the absence of the sphere, the velocity profile is 
v = Gxe,, where e3 is a unit vector in the z-direction. A planar, rigid wall is located 
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a t  x = - 1  and it is assumed that the sphere moves parallel t o  the wall a t  velocity 
-use3. In  this frame of reference, the wall moves at  velocity -Gle,. The objective 
of the analysis is to derive an expression for the x-component of the force acting on 
the particle. It is convenient to pose the problem in a frame of reference moving with 
the particle so that the fluid velocity field is time-independent. There are two 
different ways of justifying the assumption of time-independent flow. One may 
assume that a force equal and opposite to the lift force acts on the sphere and 
prevents it from migrating. An alternative is to assume that the migration velocity 
is very small in comparison with the sedimentation velocity so that one can treat the 
problem as quasi-steady. This assumption can be verified in a self-consistent manner. 

The fluid surrounding the sphere is incompressible and Newtonian. When written 
in terms of the disturbance velocity field created by the sphere, u, the Navier-Stokes 
equation takes the form 

U. V V  + (w, + Gx)  av /&  + Gv, e3 = - V p / p  + vV2u. (2.1) 
I n  (2.1), the symbol p denotes the pressure in the fluid, p denotes the fluid density, 
and v denotes the kinematic viscosity of the fluid. The boundary conditions on u are 
that it must vanish a t  infinite distance from the sphere and it must be consistent with 
rigid no-slip boundary conditions on the surface of the sphere. 

Even though Re, and Re, are small compared to unity, a t  sufficiently large 
distances from the sphere, inertial effects are comparable in magnitude to viscous 
effects. I n  this outer region, the Navier-Stokes equation may be approximated by 

(v,+Gx)av/az+Gv,e, = - V p / p +  vV2v- (F /p )6 ( r ) .  (2.2) 
In  (2.2), r denotes the position vector of a point in the fluid and F denotes the force 
exerted by the fluid on the particle, to zeroth order in inertial effects, F = 6xpuwse3, 
where a is the sphere radius and p is the dynamic viscosity of the fluid. 

The disturbance flow velocity field is assumed to be incompressible : 

v.u = 0. (2.3) 
McLaughlin (1991) considered the case of a sphere translating through an 

unbounded fluid. I n  this case, one assumes that the disturbance flow vanishes at 
large distances from the particle, 

u = O ,  r = m .  (2.4) 
McLaughlin (1991) showed that the migration velocity in the x-direction, w,, may 

be expressed as follows: 

where 
v, = (3/2a2) uv,(G/v);J, (2.5) 

J = Jr s' [5(s2-2s2(l -s2) cos2 $ - [s3(1 -s2)+cos Ip) 
0 0  

- (2) s2( 1 - 8'): cos $ e-Be/4A2 dgds dq5. (2.6) 1 
In  (2.6), 

A2 = p p  + s( 1 - $2); cos Ipp + 5, 
B = <s/e, 

E = Re$/Re,. 
and E is defined by 

9 FLM 246 
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In  the above equations, s = cos0 and q5 and 0 denote the angular coordinates of a 
spherical system in Fourier space. 

For large E ,  with an  error of order l/e4, J may be approximated by 

J = 2.255-0.6463/1?. (2.10) 

For 6 = 1, the error involved in using the asymptotic formula to  compute J is 3.4% 
and the error involved in using the asymptotic formula to compute the difference 
between J and Saffman’s value for J (2.255) is 7 .7%.  

The leading behaviour of J in the limit e < 1 is 

J = -327c2e51n(1/e2). (2.1 1 )  

The lowest-order corrections to (2.11) are of order e5. At intermediate values of E ,  J 
must be evaluated by numerical integration, and the results are tabulated by 
McLaughlin (1991). 

The lift force is related to  the migration velocity, v,, by 

ft = 67c,uav,. (2.12) 

Some insight into the origin of the inertial lift force may be obtained by 
considering the characteristic scales of the problem and the relative importance of 
the convective and viscous terms in (2.1). Two lengths of interest are the Stokes 
length, L, = v/v,, and the Saffman length, L,  = ( v / G ) j .  For e 9 1 ,  L, 9 L ,  and, for 
E + 1, L, 6 L,. For small values of Re, and Re,, the viscous term in (2.1) is small 
compared to the convective terms provided that the distance from the centre of the 
sphere, r ,  is small compared to both L, and L,. 

If E 9 1 (the case considered by Saffman), inertia will become significant when 
r - L,. For distances of this order, the terms u.Vu and vS8v/az may be neglected in 
comparison with the terms involving G .  In fact, the terms involving G remain 
dominant at distances that are large compared with L,. As shown by Saffman, the 
lift force is caused by a transverse component of the disturbance flow that originates 
a t  distances of order L,. The form of the lift force can be guessed on the basis of 
dimensional analysis guided by this intuitive notion. It is plausible that the inertial 
migration velocity should be proportional to v, and that i t  should involve L,. Thus, 
one might guess that the inertial migration velocity should be proportional to  
v,a/L,  = v,a(G/v):. To obtain the lift force, one uses (2.12). 

When E < 1, the Stokes length is small compared to the Saffman length. For 
distances from the sphere, r ,  satisfying r - L,, the term involving v, in (2.1) is 
comparable to  the viscous term. In  addition, the term involving v, is larger than the 
other convective terms. Thus, for distances satisfying r 4 L,/e, the disturbance flow 
should be well approximated by axisymmetric Oseen flow. Since there is no lift in an 
axisymmetric flow, it is plausible that the lift force should be very small compared 
to the Saffman lift force, which ignores the convective term involving v,. The terms 
involving G in (2.1) become large compared to the terms involving v, for r 9 L,/e. 
However, the disturbance flow has decayed to very small values a t  such large 
distances. The above estimates do not apply in the Oseen wake. Within the Oseen 
wake, the terms involving G in (2.1) are comparable in magnitude to the terms 
involving us at points satisfying r - EsL,. However, inertial effects will only become 
important for r - L,  within the wake. 
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3. Disturbance flow in an unbounded fluid 
I n  this section, the solution of (2.2) for the case of an unbounded fluid will be 

obtained. The results to be obtained here will be used in $4 to obtain the effect of a 
distant wall on the inertial lift force. For this purpose, i t  is convenient to introduce 
the Fourier transforms of the velocity field and the pressure field: 

u ei(k1z+kzy+bz)  dk, dk, dk,, (3.1) 

By substituting the Fourier transforms in (3.1) and (3.2) into (2.2), one obtains an 
ordinary differential equation for u. McLaughlin (1991) has given the solution of the 
differential equation for u1 : 

where 
V U U iv 

3G G G G 
f-21. = --k2e--kkl k 3 c - - k 2 { - s k 3 < .  

(3.3) 

(3.4) 

The expression for u1 in (3.3) is valid regardless of the sign of Gk,. 

sphere, it is convenient to  introduce a partial Fourier transform, T: 
To investigate the behaviour of the disturbance flow at large distances from the 

(3.5) 
J-00 J - m  

The expression for u1 in (3.3) maybe used to derive an expression for r,. First, an 
asymptotic form for u, will be derived. Let us consider a point a t  distance r from the 
sphere that is large compared to  L,. For r B L,, k - 1/r < 1/15,, and the dominant 
contributions to  u1 come from values of 6 of order (r/LG)g. This result maybe obtained 
by assuming that the first term of (3.4) is dominant. It is also assumed that E is fixed. 
It follows that u1 is given by the following asymptotic approximation: 

u1= (3.6) 

where the dimensionless wavevector q = (G/v) - ik  has been introduced and the 
dimensionless integral J1 is defined by 

J1 = jr g ePg3/, dg. (3.7) 

It may be shown that J1 = 3-+r(;). Davis (1965) gives tables of the r-function. To 
four decimals, the value of J1 is 0.9389. The value of r, is obtained by performing the 
one-dimensional Fourier integral of (3.6) : 

r, = (3/4x2) ( v /G)~av ,J ,q~Z ,  (3.8) 

9 2  
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where 1 = j - y a d y ' .  (3.9) 

The dimensionless coordinate x* is equal to  x/L,. It may be shown, using contour 
integration, that 

I = ( n / p )  e-plz*l, (3.10) 

where p z  = q i + q i .  Finally, when (3.8) and (3.10) are used with ( 3 . 5 ) ,  one obtains the 
following expression for the x-component of the  disturbance flow along the line 

(3.11) 

m m -  
q33 e-Plx*l dq, dq,. (3.12) 

where J2 = s_, L; 
It may be shown that J, = J3J4/lx*lg, where 

J3 = 4r(3 (3.13) 

and (3.14) 

To four decimals, the value of J, is 4.044/1x.$. Thus, the x-component) of the 
disturbance flow a t  y = z = 0 is 

ljl = 0.9064avS(G/v)~/( Ix*~%). (3.15) 

For us > 0, the x-component of the velocity for y = z = 0 points in the direction of 
increasing fluid velocity. It is assumed that C: > 0 in writing the above equations. 

The above results are valid for any value of 8. For smaller values of IxJ, the x- 
component of velocity depends on the value of e as well as on the value of x*. The 
value of v1 was determined by numerical evaluation of the Fourier integral in (3.1). 
The IMSL routine DQAND was used for this purpose. Further details may be found 
in McLaughlin (1991). In all cases, y = z = 0. The computed velocity field is valid 
only for values of r that satisfy r $ a because of the Oseen-like approximation for the 
nonlinear term of the Navier-Stokes equation. In  addition, the point force 
approximation breaks $own for r = O(a).  Thus, the approximation breaks down for 
x - L, Re, or x N L,  Re%. 

I n  computing the Fourier integral, the procedures described by McLaughlin (1991) 
may be used to  show that 

(3.16) w1 = (3/2n2) aw, ( G / v ) i J ,  

where J has the same form as in (2.6) except that  

B = @/c+x*(l--s2)~cos$. (3.17) 

In  the above equations, s and # have the same meaning as in (2.6). Figure 1 
illustrates the behaviour of J as a function of x* for 8 = 00 (the Saffman limit), 
E = 1,ande = 0.2.Fore = oo,w,isanevenfunctionofxfory = z = 0.Fore = 1,figure 
1 reveals a strong asymmetry, but w1 is still positive for all values of x. For 8 = 0.2, 
v1 is nearly antisymmetric. For finite values of e,  there is a jump discontinuity at  the 
origin. The discontinuity is not physical; it is caused by the failure of the Oseen 
approximation at small values of x*. 

The behaviour of J and w1 for small values of E is of particular interest since 
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FIGURE 1. The values of J in (3.16) obtained by numerical integration for E = 0.2, 1.0, and co. 
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FIGURE 2.  For 6 = 0.2, the values of' J in (3.16) obtained by numerical integration (0) are 

compared with the values predicted by the Oseen approximation (A). 

McLaughlin's (1991) results indicate that the inertial migration velocity changes sign 
for e M 0.22. Figure 2 shows that v1 is well approximated by the Oseen disturbance 
flow for e = 0.2. In this case, for x* < 5, the shear terms in the Navier-Stokes 
equation are small compared with the convective terms involving ws. 
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FIGURE 3. For E = 03, the values of J in (3.16) obtained by numerical integration (0) are 
compared with the asymptotic result in (3.15) (a). 

Finally, figure 3, which is for E = 00, shows that the numerical results for vl are 
consistent with the asymptotic result derived earlier for x* 

To incorporate wall effects, a solution for the partial Fourier transform, TI, is 
useful. If (3.5) is substituted into ( 2 . 2 ) ,  and one eliminates the pressure by using the 
continuity equation, one obtains the following fourth-order ordinary equation for the 
partial Fourier transform : 

1 .  

(3.18) 

In  (3.18), the dependent variable is the dimensionless partial Fourier transform, 
= r,/a2v,. To find a solution of the equation, i t  is helpful to  write the left-hand side 

of the equation in terms of two linear operators: 

The linear operators are defined by 

and 

(3.19) 

(3.20) 

(3.21) 

The quantity y is defined to be (ip3)i, where the branch is chosen so that the angle 
measured from the real axis is 30" in magnitude. The quantity p is defined by 

p2 = p 2  + iqJc  (3.22) 
As a first step, one solves the following equation: 

(3.23) 
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A solution of the homogeneous problem that decays as x* goes to infinity is the Airy 
function Ai (yx,+P2/y2). Another, independent, solution that decays as x* goes to 
negative infinity is Ai (w2[yx,  + P 2 / y 2 ] ) .  The quantity w is defined t o  be e-2ni/3. Bender 
& Orszag (1978) and Antosiewicz (1965) discuss the properties of the Airy functions 
and their asymptotic representations. The notation and calculational procedures in 
this paper may be found in those references. 

One may find the solution of (3.23) by the method of 'variation of parameters'. For 
positive values of x*, 

a Ai ( ~ ~ [ y s + / 3 ~ / y ~ ] )  
as f=-* 3iq3 Ai (yx* + b 2 / y 2 )  

For negative values of z*, 

(3.24) 

(3 .25)  

I n  (3.24) and (3.25), the constant c is given by 

c = Ai(0)Ai'(O)[-1+u2]. (3.26) 

Finally, one must solve the following equation : 

L,< =f. (3.27) 

are that it must vanish a t  infinity. One may find the The boundary conditions on 
solution by variation of parameters : 

(3.28) 

4. Wall effects 
When a wall is present a t  x = -1, the normal component of velocity and its first 

derivative with respect to the normal component must vanish a t  x = - 1. The latter 
condition follows from the continuity equation and the fact that the other two 
components of velocity must vanish on the wall. In  terms of the Fourier transform, 
r,, these conditions are 

r,=o, x = - i  (4.1) 
drJdX = 0, x = - 1. (4.2) 

Since (2.2) is linear, one may appeal to the principle of superposition to write r, in 
terms of the value that it would have in an unbounded fluid and the disturbance 
created by the wall: 

where the superscripts u and w denote the unbounded solution and the wall flow, 
respectively. 

The wall contribution to the partial Fourier transform satisfies the homogeneous 
version of (3.19) : 

One may obtain the solution of (4.4) by employing the same procedure as in $3.  First, 
one seeks a solution of 

r, = ry+ry, (4.3) 

L, L, rq" = 0. (4.4) 

L,f" = 0 (4.5) 
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that vanishes at x* = co. The solution is 

f "  = c1 Ai (F* + m y 2 )  
The solution for ry* (=  rl/(a2ws)) is 

One may determine the constants c1 and c, from the boundary conditions in (4.1 ) 
and (4.2) with the expressions for r;l* in (3.28): 

c1 = (Pry*( - l*)  +drl:*/dx*I,*=-,*)/I,, 
~2 = + ( - C * ( - l * ) +  ( 1 / ~ )  dry*/dx*l,*,-i*). 

(4.8) 
(4.9) 

In  (4.8), the quantity I ,  is defined as 

(4.10) 

Finally, by performing the integrals in (3.5) at x = y = z = 0, one obtains the 
inertial migration velocity of the sphere (see Saffman 1965 for a justification of this 
procedure) : 

v, = v",+v$. (4.11) 

In  (4.11), wk denotes the inertial migration velocity of the sphere in an unbounded 
fluid. The value of wk may be determined from (2.5) and (2.6). 

For large values of Z,, one may obtain an analytical expression for the wall 
contribution to  the migration velocity. By substituting (3.8) into (4.8) and (4.9), one 
finds that c,  = 0 and c1 = 2pry/I l .  Furthermore, for large values o f  l,, the first 
integral in (4.7) is negligible compared to the second integral because o f  the 
behaviour of Ai for arguments that  are large in magnitude. Thus, the partial Fourier 
transform of the wall contribution to the inertial migration velocity is given by 

where 

(4.12) 

(4.13) 

l/Z* are significant. In this In the limit of large Z,, only values of p that are order , 

limit, 12/11 approaches e - P z * .  When the forward transform is- evaluated, the 
result is 

vg = -0.2855avs(G/v)~/l\. (4.14) 

When G is negative, G must be replaced in (4.14) by its absolute magnitude and the 
sign of the expression on the right-hand side of the equation must be changed. 

Vasseur & Cox (1977) pointed out that one may appeal to boundary-layer theory 
to obtain the effects of a distant wall to leading order. AlthoughRe, and Re, are small 
compared to unity, a t  large distances from the sphere the effects of inertia dominate 
viscous effects except in the Oseen wake. Inertia will become dominant at distances 
r 8 min (L,,L,) except in the Oseen wake. Thus, if the wall is at a distance I 
satisfying I % min (LG,Ls),  it may be assumed that, near the wall, the disturbance 
flow created by the sphere is inviscid. Very close t o  the wall, viscous effects will be 
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important since both (4.1) and (4.2) must be satisfied on the wall. However, outside 
a boundary layer of thickness 6, the wall disturbance flow may be treated as inviscid. 
The boundary-layer thickness may be estimated as 6 - (vZ/v,)f. Thus, viscous effects 
will be eligible outside a thin region provided that 6 4 1, or L, + 1. 

Based on the above argument, one may obtain the result in (4.14) with the method 
of images. The wall-induced inertial migration velocity is obtained by replacing x, 
by 21, in (3.15) and reversing the sign of the result. 

The sign of v z  in (4.14) indicates that the wall exerts an attractive force on the 
sphere when the product v,G' is positive and a repulsive force when v,G < 0. This 
appears to be inconsistent with Drew's (1988) numerical results for e = co. Drew 
states that, when v,G is positive (so that the particle experiences a lift force that 
points away from the wall), the wall disturbance tends to increase the magnitude of 
the lift force for E ,  $- 1. However, the analysis of this paper indicates that  the reverse 
is true. 

I n  the weak shear limit, B 4 1, the disturbance flow is well approximated by the 
Oseen differential equation for distances r satisfying a << r 4 L,/e as was shown in $3. 
Vasseur & Cox (1977) have shown that, in this case, the sign of v$ is always positive. 
The physical mechanism is that, as the sphere translates parallel to the wall, it 
displaces fluid laterally and the wall creates a counterflow that pushes the sphere 
away from the wall. For B + 1, the asymptotic result in (4.14) applies only for 
1, = O(l/e3). This may be seen by considering the argument leading to (3.15). If k: is 
O(l/Z), the cubic term in (3.4) will be order unity if 5 = O(1i). The first term will 
dominate the other terms provided that 6/1: b c/(el,). Thus, the power-law 
behaviour will be valid only if 1, % l /e3.  

For values of I, that are order unity, one must evaluate the integrals in (4.7) and 
(3.5) t o  determine the effect of the wall on the inertial migration velocity. The Airy 
function, Ai, must be evaluated for complex arguments in order to compute ry as 
given by (3.28), as well as the integrals in (4.7) and (4.10). For values of the argument 
smaller in magnitude than 4, the Taylor series expansion of Ai was used to obtain its 
value. The number of terms in the series was chosen to be (l01.~1~);, where IzI is the 
magnitude of the complex argument, For values of the argument larger in magnibude 
than 4, the first three terms in the asymptotic series were used to obtain Ai. A 
convenient summary of the relevant expansions may be found in Bender & Orszag 
(1978). Shibata & Mei (1990) used a very similar procedure to obtain the values of the 
Airy function for complex arguments. One minor difference is that Shibata & Mei 
used the asymptotic series to evaluate the Airy functions when the magnitude is 
greater than 5 instead of 4. This procedure is slightly more accurate, but also more 
time-consuming. 

The trapezoid rule was used to compute the relevant integrals. To compute the 
integrals in (3.5), polar coordinates were used. Symmetries were exploited to reduce 
the computation of'the integral over the polar angle to an integral from 0 to in. In 
the angular integral, 11 grid points were used. The integral over p was broken into four 
shells : 0 to 1 , 1  to 10,10 to 100, and 100 to 1000. Each shell contained 400 grid points. 
For large values of I,, only the contribution from the first' shell was significant. A 
similar procedure was followed for the s-integrals except that only three shells were 
used in these calculations. Each s shell contained 160 grid points. 

The largest errors in J were associated with the s-integrations. The errors were 
largest for small values of B since more grid points were needed to resolve phenomena 
on the Stokes scale, L, = EL,. For E = 0.2, the largest error in J is 0.066 in magnitude, 
or 2.1 %, and it occurs for 1, = 0.1. The largest percentage error is 5.2 YO and it occurs 
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FIGURE 4. The values of J in (4.15) obtained by numerical integration for B = co (0) are 
compared with the Cox-Hsu theory (a). 

for 1, = 1.2. For E = 1.0, the largest error is 0.018 in magnitude, or 2.50/0, and it 
occurs for 1, = 0.1. The above error is also the largest percentage error. Finally, for 
c = co, the largest error is 0.021 in magnitude, or 2.1 %, and it occurs for 1, = 1.2. 
The largest percentage error is 3.4% and it occurs for I, = 0.1. 

To present results for the inertial migration velocity, the same non-dimensional 
quantity, J ,  will be used in order to facilitate comparisons with the results for the 
migration velocity in an unbounded fluid and the disturbance flow in an unbounded 
fluid : 

(4.15) 

and J =  P+P, (4.16) 
where the superscripts u and w denote the values in an unbounded fluid (given in 
(2.6)) and the wall contribution, respectively. 

Figure 4 shows the values of J versus I ,  for E = co . The predictions of the Cox-Hsu 
theory for small values of 1, are also plotted in the figure. 

Cox & Hsu (1977) considered the problem of a small sphere sedimenting in a 
vertical parabolic flow next to a vertical rigid wall. They considered three cases: a 
non-neutrally buoyant sphere in a strong shear flow ; a non-neutrally buoyant sphere 
in a weak shear flow; and a neutrally buoyant sphere. The first two cases are relevant 
for comparison with the cases considered in the present paper. The Cox-Hsu theory 
provides the following expression for the inertial migration of a non-neutrally 
buoyant sphere in a vertical linear shear flow: 

(4.17) 

The result in (4.17) is valid provided that a 4 E < min (LG,Ls).  In other words, the 
wall is assumed to lie within an 'inner' region where inertial effects are a small 
perturbation of the Stokes equation. 
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FIGURE 5. For B = CQ, the ratio of IJ"I in (4.16) obtained by numerical integration to the 

asymptotic prediction in (4.14) is shown. 

If the expression for vm (4.17) is written in terms of the 'outer' coordinate, l,, one 
obtains the following expression for J : 

(4.18) 

I n  the strong shear limit ( E  & l),  the second term dominates. 
The results derived in this paper must reduce to the Cox-Hsu result for sufficiently 

small values of 1,. The Cox-Hsu theory also treats the particle as a point force acting 
on the fluid (for non-neutrally buoyant particles.) Furthermore, the nonlinear term 
in the Navier-Stokes equation may be approximated by the form in (2.2) to leading 
order for r $ a ,  where r is the distance from the centre of the sphere. The primary 
difference is that, within its domain of validity, the Cox-Hsu theory treats the 
nonlinear term as small compared to the viscous term so that ordinary perturbation 
methods may be used to obtain the leading-order result. Cox & Hsu divide the flow 
field into inner and outer regions on the basis of whether the distance from the sphere 
is comparable to the sphere's radius (the inner region) or whether the distance from 
the sphere is comparable to the distance of the sphere from the wall. In  both regions, 
the inertial terms are small compared to the viscous terms. In the outer region, the 
sphere is treated as a point force to leading order. Cox & Hsu show that the leading 
contribution to the lift force comes from the outer region. All terms in (2.1) are 
treated in their analysis. However, the term u.Vu contributes at a higher order in the 
ratio al l  than the other terms. Thus, to  leading order, the nonlinear term may be 
treated as in (2.2) and the results of this paper must reduce to the Cox-Hsu theory 
for sufficiently small values of 1. 

In figure 4, i t  may be seen that, for t: = 00, J converges to the Cox-Hsu theory for 
small values of 1,. In figure 5 ,  the ratio of the computed value of Jw to  the power- 
law value is plotted versus 1, for e = co. For values of E > 1,  the power-law formula 
gives estimates for Jw that are accurate to within 25% for 1, > 10. 
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FIGURE 6. The values of J in (4.15) obtained by numerical integration for 6 = 1 (0) are 

compared with the Cox-Hsu theory (A).  
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1, 
FIGURE 7. The values of J in (4.15) obtained by numerical integration for B = 0.2 (0) are 

compared with the Vasseur-Cox theory (a). 

In  figure 6, the values o f  J are plotted versus 1, for F = I .  The computed results 
agree well with the Cox-Hsu theory for small values of 1,. 

For small values of e,  the Cox-Hsu theory is valid only for I ,  << E .  Within its small 
region of validity, the Cox-Hsu theory predicts that the shear contribution to  the lift 
is unimportant. For Re& 4 1, 4 1/c, the Vasseur-Cox (1977) theory should provide 
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FIGURE 8. The values of J in (4.15) obtained by numerical integration for B = - 1 (0) are 
compared with the Cox-Hsu theory (A). 

1, 
0.1 
0.2 
0.4 
0.6 
0.8 
1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
3.0 
4.0 
5.0 
a3 

8 = 0.2 
3.07 
2.82 
2.06 
1.52 
1.16 
0.903 
0.727 
0.580 
0.475 
0.398 
0.342 
0.192 
0.126 
0.090 

-0.0125 

0.4 0.6 0.8 1 .o 1.5 2.0 co 
1.65 1.14 0.881 0.720 0.505 0.409 0.143 
1.69 1.23 0.982 0.826 0.615 0.521 0.255 
1.56 1.25 1.07 0.943 0.766 0.686 0.455 
1.42 1.25 1.12 1.03 0.891 0.827 0.631 
1.30 1.23 1.15 1.09 0.983 0.934 0.771 
1.19 1.20 1.17 1.13 1.05 1.01 0.886 
1.08 1.17 1.18 1.16 1.12 1.10 1.01 
0.977 1.12 1.17 1.18 1.17 1.17 1.12 
0.889 1.08 1.16 1.19 1.21 1.23 1.22 
0.816 1.04 1.15 1.20 1.25 1.52 1.30 
0.766 1.01 1.14 1.21 1.28 1.69 1.37 
0.572 0.908 1.13 1.27 1.44 1.52 1.69 
0.463 0.857 1.15 1.34 1.58 1.69 1.89 
0.396 0.848 1.19 1.42 1.70 1.82 2.02 
0.408 1.024 1.436 1.686 1.979 2.094 2.255 
TABLE 1. Values of J for several positive values of 8 

a good approximation to  the inertial migration velocity. For that reason, figure 7 
compares the computed results for J to the results predicted by the Vasseur-Cox 
theory for E = 0.2. 

Up to this point, both v, and G have been assumed positive. If both v, and G are 
negative, the results are the same as when both parameters are positive. Different 
behaviour is observed if either v, or G is negative. The results for v, < 0 and G > 0 
are the same as the results for v, > 0 and G < 0. Thus it is necessary to consider only 
the former case. This situation corresponds to negative values of E .  For negative 
values of 6,  the sign of J is opposite to the sign of the lift force. Figure 8 shows J 
versus I, for E = - 1 .  For 1, greater than about 0.5, the lift force points towards the 
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1, 
0.1 
0.2 
0.4 
0.6 
0.8 
1 .O 
1.2 
1.4 
1.6 
1.8 
2.0 
3.0 
4.0 
5.0 
00 

& = -0.2 
-2.90 
-2.55 
- 1.68 
-1.11 
-0.745 
-0.504 
-0.368 
-0.239 
-0.162 
-0.111 
-0.076 
-0.016 
-0.003 
-0.0007 
-0.0125 

~ 

- 0.4 -0.6 -0.8 - 1.0 -1.5 -2.0 
-1.46 -0.952 -0.695 -0.542 -0.338 -0.223 
-1.34 -0.844 -0.589 -0.435 -0.230 -0.114 
-0.980 -0.566 -0.334 -0.191 0.001 0.110 
-0.704 -0.340 -0.119 0.018 0.204 0.308 
-0.492 -0.157 0.057 0.191 0.371 0.471 
-0.317 0.0015 0.211 0.342 0.515 0.610 
-0.178 0.146 0.362 0.495 0.666 0.757 
-0.048 0.287 0.508 0.642 0.809 0.896 

0.051 0.404 0.634 0.771 0.937 1.02 
0.126 0.501 0.743 0.884 1.05 1.13 
0.182 0.576 0.827 0.972 1.14 1.22 
0.314 0.805 1.12 1.30 1.51 1.59 
0.354 0.898 1.25 1.46 1.70 1.80 
0.370 0.939 1.32 1.54 1.81 1.91 
0.408 1.024 1.436 1.686 1.979 2.094 

TABLE 2. Values of J for several negative values of 8 

--co 

0.143 
0.255 
0.455 
0.631 
0.771 
0.886 
1.01 
1.12 
1.22 
1.30 
1.37 
1.69 
1.89 
2.02 
2.255 

wall. However, at smaller separations, the lift force becomes repulsive. Such 
behaviour is to be expected on the basis of the Cox-Hsu result in (4.17). 

The values of J are given in tables 1 and 2 for several values of E .  For values outside 
the range given in the tables, the asymptotic results of Saffman, Cox & Hsu, Vasseur 
& Cox, and this paper may be used to approximate the lift force. For small values 
of I,, either the Cox-Hsu or Vasseur-Cox theories give useful approximations. For 
values of I, larger than 5, the large-distance form in (4.14) may be used to estimate 
P for E > 1. For small values of 8, wall effects are small enough to be negligible for 
most purposes when 1, > 5. Thus, by combining the results in tables 1 and 2 with the 
various asymptotic limits, it should be possible to develop useful approximate fits to 
the lift forces. 

5 .  Conclusions 
The main result of this paper is the expression for the partial Fourier transform of 

the wall-induced component of the inertial migration velocity in (4.7). By performing 
the two-dimensional integral in (3.5), one may obtain the wall-induced component of 
the inertial migration velocity, vg. When the distance from the wall is small 
compared to (v/G)a, the result reduces to the Cox-Hsu result. For small values of E ,  

the results derived in this paper are consistent with the result derived by Vasseur & 
Cox (1977) for a sphere translating parallel to a flat wall in a stagnant fluid. Figures 
4, 6, 7 ,  and 8 show results predicted for J as defined in (4.15). When 1 is very large 
compared to (v/G)a, a universal expression for the wall-induced lift applies. This 
result is given in (4.14). Tables 1 and 2 give values of the wall-induced lift over a 
range of E for values of 1 that are of order (v/G):. 

The results presented in this paper fill a gap between the results presented for wall- 
bounded flows by Cox & Hsu (1976) and Vasseur & Cox (1977) and the results 
presented for unbounded fluids by Saffman (1965) and McLaughlin (1991). Although 
the results of this paper are for a linear flow next to a single vertical wall, the method 
could be used to compute results for a plane Couette flow between two vertical walls. 
However, it appears to be very difficult to generalize the analysis of this paper to 
include parabolic flows. Using the Cox-Brenner theory, Cox & Hsu (1976) and 
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Vasseur & Cox (1976) derived results for parabolic flows as well as linear flows. The 
restriction on their theory is that the wall must lie within the ‘inner ’ region of the 
disturbance flow created by the particle. 

If both v, and G are positive ( E  > 0), the lift force on the sphere points away from 
the wall except for cases in which e is small and 1, is large. The situation corresponds 
to a negatively buoyant particle in an upward shear flow. The same behaviour occurs 
for a positively buoyant particle in a downward shear flow. 

A positively buoyant particle in an upward shear flow (v, < 0 and G > 0) or a 
negatively buoyant particle in a downward shear flow (v, > 0 and G < 0) experiences 
a lift force that points towards the wall if it  is at sufficiently large distances from the 
wall provided that the magnitude of e is not too small. For negative values of E that  
are large in magnitude, the lift force points towards the wall except for I ,  < l / e  (see 
(4.17).) However, for negative values of e that  are small in magnitude, the lift force 
points away from the wall for all values of I , .  

This work was supported by the United States Department of Energy under 
contract DE-FG02-88ER 139 19. 
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